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Abstract.  The myeloproliferative disorders, polycythemia vera, essential 
thombocythemia, and primary myelofibrosis are clonal disorders of 
multipotent hematopoietic progenitors. The genetic cause of these diseases 
was not known until 2005, when several independent groups demonstrated 
that most patients with PV, ET and PMF acquired a single point mutation in 
the cytoplasmic tyrosine kinase, such as JAK2 (JAK2 V617F). These 
discoveries have changed the landscape for diagnosis and classification of 
PV, ET and PMF, and have shown the ability of genomic technologies to 
identify new molecular targets in human malignancies with pathogenetic, 
diagnostic and therapeutic significance. 
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Introduction 
Myeloproliferative disorders (MPD) are clonal disorders of 
hematopoietic progenitors, and include the classical MPD chronic 
myeloid leukemia (CML), polycythemia vera (PV), essential 
thrombocythemia (ET) and primary myelofibrosis (PMF), as well as 
chronic eosinophilic leukemia (CEL), chronic myelomonocytic leukemia 
(CMML), and systemic mastocytosis (SM) and others. The different 
myeloproliferative disorders (MPD) can be classified by the predominant 
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terminally differentiated myeloid cell involved in the disorder, and for 
each terminally differentiated myeloid cell there is a clinically distinct 
MPD. Different approaches have been used to identify the activating 
alleles that cause these disorders, and in all cases these alleles result in 
constitutive tyrosine kinase signaling. HSC, hematopoietic stem cell; 
JAK2, Janus kinase 2; MPL, thrombopoietin receptor; PDGFR, platelet 
derived growth factor receptor (Fig. 1).  Although, each of the MPD is 
recognized as a distinct clinicopathological entity, these disorders share 
cardinal features that distinguish the MPD from other myeloid 
malignancies[1], namely myelodysplastic syndromes (MDS) and acute 
myeloid leukemia (AML).  In the past two decades, mutant alleles have 
been identified in CML, CMML, CEL and SM[2-5]. In each case the 
causative mutation results in constitutive activation of tyrosine kinase 

 
Fig.. 1.  MPD classification and molecular pathogenesis. 
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signaling.  Perhaps, the most important from a clinical perspective, 
specific inhibition of these activated kinases results in dramatic clinical 
efficacy in the treatment of MPD[4-7].  Collectively, these data indicate 
that tyrosine kinase activation is a common pathogenetic mechanism in 
MPD, moreover these mutated kinases serve as validated targets for the 
design of molecularly targeted therapies. Although, these discoveries 
provided an important insight into the pathogenesis and treatment of 
certain MPD, the genetic causes of the most common MPD remained 
unknown; until the identification of mutations that activate Janus kinase 
2 (JAK2) signaling in most patients with PV, ET or PMF[8-11]. In this 
mini review report, the discussion will include our understanding of the 
genetic basis of these disorders, in particular relating to the role of JAK2 
activation in the pathogenesis of PV, ET and PMF.  

JAK2 V617F Mutations in PV, ET and PMF 
In 2005, several independent groups used different experimental 

approaches to identify a recurrent mutation in the JAK2 tyrosine kinase in 
most patients with PV, ET or PMF[8-11].  JAK2 is a member of the Janus 
family of cytoplasmic non-receptor tyrosine kinases, which also includes 
JAK1, JAK3 and TYK2.  The mutation is a G-T substitution at 
nucleotide 1849, which results in substitution of V-F at amino acid 
position 617 of JAK2 (JAK2 V617F).  The mutation is present in 
hematopoietic cells, but not germline DNA in patients with MPD[8-11], 
demonstrating that JAK2 V617F is a somatic mutation that is acquired in 
the hematopoietic compartment. In addition, the JAK2 V617F allele can 
occasionally be present in different hematopoietic compartments[12,13], 
including B and T lymphoid cells.  These findings suggest that the 
mutation might occur in the pluripotent hematopoietic stem cell; indeed, 
the JAK2 V617F allele has recently been identified in the hematopoietic 
stem cell (HSC) compartment in patients with PV[14].  These data are in 
agreement with the hypothesis that the self-renewing properties of HSCs 
are necessary for the MPD phenotype, and that activated tyrosine kinases 
can transform HSCs, but not myeloid progenitors that lack the capacity 
for self-renewal[15].  

In the initial reports of the JAK2 V617F allele in PV, ET and 
PMF, it was noted that, although, most patients with MPD are 
heterozygous for JAK2 V617F, a subset of patients, most commonly with 
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PV, are homozygous for the JAK2 V617F allele[8-11].  The mechanism of 
homozygosity for JAK2 V617F is not loss of the wild-type allele, as is 
observed for classical tumor-suppressor genes, but instead results from 
mitotic recombination and duplication of the mutant allele MPD[8-11], 
known as acquired uniparental disomy (UPD). UPD involving 
chromosomal locus 9p24, including JAK2, had previously been noted in 
PV[16], and Kralovics et al. identified the JAK2 V617F allele through 
analysis of the minimal region of UPD in PV[11].  Homozygous JAK2 
V617F mutant erythroid colonies can be grown from almost all patients 
with PV[17]; suggesting that UPD at the JAK2 locus resulting in JAK2 
V617F homozygosity is an early event in the pathogenesis of PV.  By 
contrast, homozygous JAK2 V617F mutations are rarely observed in 
ET[8], and hematopoietic colonies have grown from ET patients are most 
commonly wild type or heterozygous with respect to JAK2.  These data 
suggested that there are important genetic differences between PV and 
ET, and that duplication of JAK2 V617F is the most important to the 
pathogenesis of PV. 

After the discovery of the JAK2 V617F allele, sensitive, allele-
specific assays have been used to assess the frequency of JAK2 V617F 
mutations in different malignancies[10,17-19] (Table 1).  Although, JAK2 
V617F mutations are most common in PV, ET and PMF, they occur less 
commonly in other myeloid diseases; including CMML, MDS and 
AML[19-22], whereas acquisition of JAK2 V617F does not occur in 
lymphoid malignancies or in solid tumors.  The predilection of JAK2 
V617F mutations for myeloid malignancies is surprising, given that there 
is significant evidence that activation of Jak-Stat (signal transducer and 
activator of transcription) signaling occurs in a wide spectrum of human 
malignancies[23].  Existing genetic data suggested that there are desperate 
mechanisms for activation of Jak-Stat signaling in different 
malignancies; including JAK2 V617F mutations in myeloid 
malignancies, JAK3 mutations in megakaryoblastic leukemia[24]. JAK2 
amplification and suppressor of cytokine signaling 1 (SOCS1) mutations 
in Hodgkin disease and mediastinal large B-cell lymphoma[25-28], and 
promoter hypermethylation of SOCS1 in multiple myeloma[29].  As high-
resolution genomic strategies improve, our understanding of the cancer 
genome novel genomic events that result in activation of Jak-Stat 
signaling are likely to be identified in hematopoietic and non-
hematopoietic neoplasms.  
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Table 1.  Frequency of the JAK2 V617F allele in myeloid disorders. 

Disease Frequency 
Polycythaemia Vera 81-99% 
Essential Thombocytosis 41-72% 
Primary Myelofibrosis 39-57% 
Chronic Myelomonocytic Leukemia 3-9% 
Myelodysplasia* 3-5% 
Acute Myeloid Leukemia‡ < 5% 

*Most common in patients with refractory anemia with ringed sideroblasts and thombocytosis. A clinically distinct subtype of 
myelodysplastic syndromes. ‡Most common in patients with a previous history of polycythemia vera, essential 
thrombocytopenia and primary myelofibrosis. 

JAK2 V617F and Signal Transduction 
The Jak Kinases normally function through their association with 

cytokine receptors that lack intrinsic kinase activity.  Ligand binding to 
the appropriate cytokine receptor results in Jak kinase phosphorylation 
and activation, cytokine receptor phosphorylation, recruitment and 
phosphorylation of Stat proteins; and the activation of downstream 
signaling proteins.  The specificity of different cytokine receptors for one 
or more different Jak kinases accounts in part for their differential effects 
on signal transduction.  Genetic deletion of JAK2 results in embryonic 
lethality owing to a lack of definitive erythropoiesis, and JAK2-deficient 
hematopoietic progenitors do not respond to erythropoietin (EPO) 
stimulation; these data demonstrate JAK2 is the sole Jak kinase 
responsible for EPO receptor (EPOR) signaling[30]. 

The Jak kinases have seven homologous domains (JH1-7), which 
include the catalytic kinase domain (JH1) and a catalytically inactive 
pseudokinase domain (JH2).  The JAK2 V617F point mutation results in 
a single amino acid substitution within the JH2 domain of JAK2. It has 
been suggested that the JH2 domain serves as an auto inhibitory function 
similar to the juxtamembrane domain of receptor tyrosine kinases[31], and 
that valine 617 has an important role in mediating JAK2 kinase 
autoinhibition[32].  The valine-to-phenylalanine substitution at codon 617 
might abrogate autoinhibition and result in constitutive kinase activity[33], 
although, structural insight is needed to determine if this is the case.  The 
JAK2 V617F protein has constitutive kinase activity[34], and when 
expressed in vitro JAK2 V617F, but not wild-type JAK2, is constitutively 
phosphorylated[8], which is consistent with the notion that JAK2 V617F is 
a gain-of-function mutation with respect to JAK2 kinase activity. 
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Expression of JAK2 V617F confers cytokine hypersensitivity and 
cytokine-independent growth to hematopoietic cells, which are 
characteristic features of hematopoietic colonies grown from patients 
with PV[35]. JAK2V617F-mediated transformation to cytokine-
independent growth is most efficient in hematopoietic cells that co-
express the EPOR, the thrombopoietin receptor (MPL), or the 
granulocyte colony-stimulating factor receptor (GCSFR)[36].  Unlike most 
cytokine receptors, EPOR, MPL and GCSFR are homodimeric type I 
cytokine receptors that are expressed on cells of the erythroid, 
megakaryocytic and granulocytic lineages, respectively.  Although, these 
data do not exclude the possibility that JAK2 V617F interacts with non-
homodimeric hematopoietic cytokine receptors; unlike other activated 
tyrosine kinases that have been identified in human malignancies, 
JAK2V617F-mediated hematopoietic cell transformation requires 
interaction with a cytokine receptor scaffold. In addition, the predilection 
of the JAK2 V617F allele for proliferative syndromes involving the 
erythroid, megakaryocytic and granulocytic lineages, might in part be 
explained by differential cytokine receptor expression during 
hematopoietic differentiation. 

In vitro studies, demonstrate that the expression of JAK2 V617F 
activates multiple downstream signaling pathways[8,36], including the Stat 
family of transcription factors, the mitogen activated protein kinase 
(MAPK) signaling pathway, and the phosphotidylinositol 3-kinase 
(PI3K)-Akt signaling pathway. Cytokine ligands normally bind cytokine 
receptors, which results in Janus kinase 2 (JAK2) phosphorylation, 
recruitment of signal transducer; an activator of transcription (Stat) 
signaling proteins and phosphorylation, An activation of downstream 
signaling pathways, including Stat transcription factors, mitogen 
activated protein kinase (MAPK) signaling proteins, and the 
phosphotidylinositol 3-kinase (PI3K)–Akt pathway (Fig. 2). Most 
activated tyrosine kinases that have been identified in human 
malignancies activate these same signaling cascades. The role and 
requirement of the Stat, MAPK and PI3K-Akt signaling pathways in 
JAK2 V617F-mediated transformation of hematopoietic cells has not 
been fully elucidated. However, several lines of evidence suggest that 
activation of the Stat family of transcription factors is important in JAK2 
V617F-mediated transformation. First, expression of either constitutively 
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active STAT5 or its anti-apoptotic target gene BCL-XL in human 
hematopoietic progenitors results in EPO-independent colony 
formation[37]; a hallmark of human PV. Moreover, STAT3 activation and 
BCL-XL over expression are observed in most PV patient samples[38,39].  
These data imply that Stat pathway activation is important in JAK2 
V617F-mediated transformation, but do not indicate whether Stat 
pathway activation is necessary and/or sufficient for JAK2 V617F-
mediated transformation. Murine bone marrow transplantation (BMT) 
assays using Stat5a; Stat5b-deficient mice have been used to show that 
STAT5 is required for hematopoietic transformation by the constitutively 
active TEL-JAK2 fusion tyrosine kinase[40], and future experiments will 
ultimately determine whether the same is true for JAK2 V617F.  In 

 
Fig. 2. The mechanism of activation of JAK2 kinase activity by mutations in the 

JAK2 signaling pathway. (A) Cytokine ligands normally bind cytokine 
receptors. (B) Mutant JAK2 (V617F and JAK2 exon 12 mutant kinases) lead to 
ligand-independent activation of downstream signaling pathways. (C) 
MPLW515L/K mutant thrombopoietin receptors are able to phosphorylate 
wild-type JAK2 in the absence of thrombopoietin. 
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addition, the activation of signaling by the JAK2 V617F kinase might in 
part be due to escape from negative-feedback mechanisms important in 
attenuating JAK2 signal.  JAK activity is negatively regulated by the 
Socs family of proteins, which normally bind to the Jak kinases and 
result in their degradation. In particular, SOCS1 and SOCS3 have been 
shown to bind to JAK2 and inhibit JAK2 catalytic activity[41,42]. Over 
expression of SOCS1 results in abrogation of in vitro and in vivo 
transformation by TEL-JAK2[43]. Although, expression of SOCS1 results 
in JAK2 and JAK2 V617F degradation and inhibition of kinase activity, 
the expression of SOCS3 paradoxically results in increased JAK2 V617F 
protein stability, increased SOCS3 phosphorylation and increased JAK2 
V617F phosphorylation[44].  These data demonstrate that regulation of 
JAK2 kinase activity by SOCS3 is altered in the context of the V617F 
substitution, and suggest the possibility that therapeutic inhibition of 
SOCS3 might selectively attenuate JAK2 V617F, but not wild-type JAK2 
signaling. 

In vivo data from murine BMT experiments have provided 
important insights into the role of JAK2 activation in the pathogenesis of 
MPD. James et al. noted that the expression of JAK2 V617F, but not in 
wild-type JAK2, in a murine BMT assay results in significant 
erythrocytosis in recipient mice 28 days after transplantation[8,9].  
Subsequent studies by several groups have confirmed and extended these 
findings[45-48] (Table 2).  Several important observations can be made 
based on the data from these studies.  First, although, expression of most 
activated tyrosine kinases in a murine BMT model results in a 
neutrophilic MPD most similar to human CML[47-50], the predominant 
phenotype that results from in vivo JAK2 V617F expression is 
erythrocytosis. By contrast, leukocytosis is observed in the Balb/C, but 
not the C57Bl/6 genetic background[45,47], suggesting that there are 
genetic modifiers which influence the phenotype of JAK2 V617F-
positive hematopoietic progenitors.  In addition, although thrombocytosis 
is commonly observed in PV and ET, expression of JAK2 V617F it does 
not induce thrombocytosis in recipient in mice.  These data indicate that 
expression of JAK2 V617F by itself might result in human PV, but that 
additional genetic events are necessary for the development of ET and/or 
PMF.  



The Role of Janus Kinase 2 (JAK2)…  11

Table 2.  Murine models of MPD. 
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JAK2 V617F[45,47,48] Balb/C Yes Yes Yes No Yes 
JAK2 V617F[45-47] C57 Bl/ 6 Yes No Yes No* Modest 
JAK2 exon 12[53] Balb/C Yes Yes Yes No Yes 
MPLW515L[55] Balb/C No Yes Yes Yes Yes 

JAK2 V617F-Negative PV, ET and PMF 
Although, JAK2 V617F mutations can be identified in many 

patients with PV, ET and PMF, a significant proportion of patients with 
ET, PMF and a small number of patients with PV are JAK2 V617F 
negative. Clonal hematopoiesis is observed in patients with JAK2 V617F-
negative MPD[30], suggesting alternate alleles account for 
myeloproliferation in this setting.  Moreover, serial assessment of JAK2 
V617F status in JAK2V617F-negative MPD did not observe conversion 
to JAK2 V617F-positive MPD[51], indicating JAK2 V617F-negative MPD 
are pathogenetically distinct from JAK2 V617F-positive MPD. 

JAK2 Exon 12 Mutations in V617F-Negative PV 
Although, most patients with PV are JAK2 V617F are positive 

when assessed using appropriately sensitive allele-specific assays, a 
small proportion of patients with PV are negative for the JAK2 V617F 
allele[10,19,20,52].  In order to search for alternate alleles that might result in 
the activation of Jak-Stat signaling, Scott et al. analyzed patients with 
JAK2 V617F-negative PV for somatic mutations in all exons of JAK1, 
JAK2, JAK3, TYK2, STAT5A and STAT5B[53].  Genomic analysis 
identified four novel somatic mutations in exon 12 of JAK2; one novel 
allele was a point mutation that results in the substitution of lysine for 
leucine at codon 539 (K539L), and three additional alleles were small 
deletions or insertions involving codons 538 to 543.  In vitro colony 
assays showed that JAK2 exon 12 mutations were present in all EPO-
independent colonies have grown from these patients.  Expression of 
these novel JAK2 mutant kinases in Ba/F3 cells co-expressing EPOR, 
resulted in transformation to factor-independent growth, and in activation 



M.A. Gari 12

of downstream signaling pathways in an analogous fashion to the 
canonical JAK2 V617F allele.  In addition, expression of the JAK2 exon 
12 mutations in a murine BMT assay recapitulated the phenotype of 
JAK2 V617F, with recipient mice developing; polycythemia, 
splenomegaly, and erythroid expansion.  Unlike JAK2 V617F, JAK2 
exon 12 mutations are only observed in JAK2 V617F-negative PV, and 
are specific to patients who present with isolated erythrocytosis without 
concomitant leukocytosis or thrombocytosis.  These data indicate that 
JAK2 exon 12 mutations contribute to the pathogenesis of JAK2 V617F-
negative PV, plus different activating JAK2 alleles are associated with 
different clinical phenotypes. 

Additional Inherited and Acquired Alleles in MPD 
Although, existing data indicates that acquisition of JAK2 V617F 

mutations contributes to the pathogenesis of PV, ET and PMF, there are 
probably additional genetic events that contribute to the development of 
these MPD. Given that the identical point mutation occurs in three 
related, but clinically distinct disorders, additional genetic factors must 
cooperate with the JAK2 V617F kinase to determine the phenotype of 
JAK2 V617F-positive MPD.  Genetic data from families with a 
predisposition to develop MPD support this hypothesis. Several groups 
have identified families with more than one member with a diagnosis of 
PV, ET or PMF[60,61].  Gain-of-function mutations in KRAS[62] and 
RET[63] have been identified in familial cancer predisposition syndromes; 
however, analysis of JAK2 V617F mutational status in familial MPD has 
not identified the germline JAK2 V617F mutations[64,65].  By contrast, 
somatic JAK2 V617F mutations are identified in some, but not all, 
affected members in these kindreds.  These data are consistent with the 
notion that there are heritable alleles that predispose to the acquisition of 
JAK2 V617F mutations and to the development of PV, ET and PMF. 
Although, the identity of these predisposition alleles is not known, it is 
attractive to hypothesize that these MPD predisposition alleles modulate 
JAK2 signaling and increase the selective advantage of cells that acquire 
the JAK2 V617F allele. 

In addition, several lines of evidence suggest there might be a 
'pre-JAK2 V617F' transformed hematopoietic progenitor.  Patients with 
PV, ET or PMF are at an increased risk for the development of AML, 
and although JAK2 V617F mutations are relatively uncommon in de novo 
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AML they are present in many patients with AML secondary to a 
MPD[18].  However, two recent studies have demonstrated that a 
significant proportion of patients with a history of JAK2 V617F-positive 
MPD develop a JAK2 V617F-negative AML[51,66].  Cytogenetic and 
clonality analyses in a small number of cases suggest; the JAK2 V617F-
positive MPD and JAK2 V617F-negative AML arise from the same 
clone[66].  Cytogenetic abnormalities occur in a subset of patients with 
PV, ET or PMF, including deletions on the long arm of chromosome 
20[67].  In a small number of MPD patients, cytogenetic analyses show 
that all hematopoietic cells possess 20q deletions, but only a subset of 
these cells carry the JAK2 V617F allele[68,69].  These data indicate 
additional mutations can precede the acquisition of JAK2 V617F 
mutations; whether these mutations are distinct from the alleles that 
contribute to familial MPD is not known. Given that JAK2 V617F-
negative MPD patients do not become JAK2 V617F positive during the 
course of their disease It is likely that the pre-JAK2 clone does not 
manifest as a clinically apparent MPD, and the mutations that precede the 
acquisition of JAK2 V617F are distinct from those that activate signaling 
in the absence of JAK2 V617F.  Given that murine BMT experiments 
suggest that JAK2 V617F is sufficient to induce a PV phenotype, 
cooperating alleles might not be present in all patients with JAK2 V617F-
positive MPD. 

Future Directions 
Although, our understanding of the pathogenesis of PV, ET and 

PMF has greatly improved by the discovery of the JAK2 V617F allele, 
future studies will allow us to better understand the molecular 
pathogenesis of these MPD; to create more accurate genetic models of 
MPD and to develop molecularly targeted therapies for patients with 
these disorders. Current and future research into the genetic basis of 
MPD will include screens of JAK signaling molecules to identify mutant 
alleles in JAK2- and MPL-negative MPD, as well as genome-wide 
studies to identify inherited and/or acquired events that cooperate with 
JAK2 V617F. Moreover, detailed investigation of signal-transduction 
cascades activated by JAK2 V617F will delineate the role and 
requirement for different signaling pathways in hematopoietic 
transformation.  Most importantly, the development of specific, potent 
inhibitors of JAK2 will allow assessing whether targeted therapy against 
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JAK2 results in significant clinical efficacy. Given that JAK pathway 
activation is commonly observed in many different human 
malignancies[24], it would predict that genomic screens will identify 
additional mutations that activate this signaling pathway in hematopoietic 
and epithelial tumors,  The pharmacological inhibition of JAK kinase 
signaling will be of value in the treatment of human malignancies. 
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 دور التايروسين كاينيز في تطور سرطان الدم المزمن

 ممدوح عبد االله قارى
  كلية العلوم الطبية التطبيقية ، ، قسم تقنية المختبرات الطبية

  جامعة الملك عبد العزيز مركز التميز لبحوث الجينوم الطبي ،
 المملكة العربية السعودية -جدة  

يعرف بأنه خلايا الدم البيضاء ) اللوكيميا(ابيضاض الدم   .المستخلص
 ىإل هذا المرضيمكن تقسيم و .في نخاع العظام ةالسرطانية الغير ناضج

ميولويد (ئيسين، وهما مرض اللوكيميا الحاد في الخلايا المحببة نوعين ر
 الميولويد لوكيميا المزمن .في الخلايا المحببة المزمن اللوكيمياو ،)لوكيميا

)chronic myeloproliferative disorders(ينقسم إلى خمس مجموعات ،. 
وهذا النوع هو من الأمراض السرطانية الذي يمكن تشخيصه بسهولة 

  .سب وجود الخلايا الغير ناضجة في نخاع العظام ومن ثم في الدمح
التي تحدث  - تؤكد أن الطفرات الجينية التي بعض البحوث توجد

في بعض المستقبلات الخلوية الموجودة في الخلايا الجذعية في نخاع 
ومن . في تطور المرض امهم الها دور - العظام، لمرضى سرطان الدم

 Non( غير المستقبلات للتايروسين كاينيز، وت الخلويةضمن هذه المستقبلا

receptor tyrosine kinases and Receptor Tyrosine kinases(  Jak2  وهو
 non Receptor Tyrosine(عبارة عن غير مستقبل للتايروسين كاينيز 

kinases(زم الخلية لتلك تعتبر من البروتينات السابحة في سيتوبلا ي، وه
وهذه الفئة من المستقبلات لها دور هام في نمو وتكاثر . المستقبلات

الخلايا الجذعية في نخاع العظام، وعلى هذا الأساس، أي طفرات جينية 
قد تؤدي إلى حدوث خلل في نمو  Jak2تحدث في الجين المسؤول عن 

طان تلك الخلايا الجذعية، مما يؤدي إلى حدوث تطورات في مرضى سر
 .الدم


