Matrix Transformation into a New Sequence Space Related to Invariant Means

Adnan Alhomaidan

Department of Mathematics, Faculty of Science, King Abdulaziz University P.O. Box 80081, Jeddah 21589, Saudi Arabia alhomaidana@yahoo.com

Abstract. In this paper we define a sequence space V_{∞} through the concept of invariant means and prove that this is a Banach space under certain norm. We further characterize the matrix classes (l_{∞}, V_{∞}) and (l_1, V_{∞}) .

AMS subject classification: 40H05, 46A45.

Keywords: Sequence spaces, invariant mean, matrix transformations.

Introduction and Preliminaries

Let l_{∞} and *c* be the Banach spaces of bounded and convergent sequences $x = (x_k)$ respectively with norm $||x||_{\infty} = \sup_{k \ge 0} |x_k|$, and l_1 be the space of absolutely convergent series with $||x||_1 = \sum_k |x_k|$.

Let σ be a mapping of the set of positive integers \mathbb{N} into itself. A continuous linear functional ϕ on l_{∞} is said to be an *invariant mean* or a σ -mean if and only if, (i) $\phi(x) \ge 0$ when the sequence $x = (x_k)$ has $x_k \ge 0$ for all k, (ii) $\phi(e) = 1$, where $e = (1, 1, 1, \cdots)$, and (iii) $\phi(Tx) = \phi(x)$ for all $x \in l_{\infty}$, where $Tx = (Tx_k) = (x_{\sigma(k)})$. In case σ is the translation mapping $k \to k + 1$, a σ -mean is often called a Banach limit^[1] and V_{σ} , the set of bounded sequences all of whose invariant means are equal, is the set f of almost convergent sequences^[2].

Note that^[3],

$$V_{\sigma} := \{ x \in l_{\infty} : \lim_{m} t_{mn}(x) = L \text{ uniformly in } n, L = \sigma - \lim x \},\$$

where

$$t_{mn}(x) = (x_n + Tx_n + \dots + T^m x_n) / (m+1),$$

and

 $t_{-1,n} = 0.$

A σ -mean extends the limit functional on *c* in the sense that $\phi(x) = \lim x$ for all $x \in c$ if and only if σ has no finite orbits, that is to say, if and only if, for all $n \ge 0, m \ge 1, \sigma^m(n) \ne n$ (see Ref. [4]).

We say that a bounded sequence x is σ -convergent if and only if $x \in V_{\sigma}$ such that $\sigma^{m}(n) \neq n$ for all $n \ge 0$, $m \ge 1$ (see Ref. [5]).

Let X and Y be two sequence spaces and $A = (a_{nk})_{n,k=1}^{\infty}$ be an infinite matrix of real complex numbers. We write $Ax = (A_n(x))$ where $A_n(x) = \sum_k a_{nk}x_k$ and the series converges for each n. If $x = (x_k) \in X$ implies that $Ax \in Y$, then we say that A defines a matrix transformation from X into Y. By (X, Y) we denote the class of matrices A such that $Ax \in Y$ for $x \in X$.

In this paper we define a new sequence space V_{∞} related to the concept of σ mean and prove that V_{∞} in a Banach space under certain norm. We also characterize the matrices of the class (l_{∞}, V_{∞}) and (l_1, V_{∞}) .

We define the space V_{∞} as follows

$$V_{\infty} := \{ x \in l_{\infty} : \sup_{m, n} |t_{mn}(x)| < \infty \}.$$

Note that if σ is a translation then V_{∞} is reduced to the space

$$f_{\infty} := \{ x \in l_{\infty} : \sup_{m,n} |g_{mn}(x)| < \infty \}.$$

where

$$g_{mn}(x) = \frac{1}{m+1} \sum_{k=0}^{\infty} x_{k+n}$$

We call the space V_{∞} as the space of σ -bounded sequences. It is clear that $c \subset V_{\sigma} \subset V_{\infty} \subset l_{\infty}$.

Results

Theorem 1

 V_{∞} is a Banach space normed by

$$\|x\| = \sup_{m,n} |t_{mn}(x)| \tag{1}$$

Proof

It is easy to see that V_{∞} is a normed linear space under the norm in (1).

Now we have to show the completeness of V_{∞} . Let $(x^{(i)}) \underset{i=1}{\overset{\infty}{\longrightarrow}}$ be a Cauchy sequence in V_{∞} . Then $(x_k^{(i)}) \underset{i=1}{\infty}$ is Cauchy sequence in \mathbb{R} for each k and hence convergent in \mathbb{R} that is, $x_x^{(i)} \xrightarrow{\sim} x_k$, say, as $i \rightarrow \infty$. Let $x = (x_k)_{k=1}^{\infty}$. Then by the defi

inition of norm on
$$V_{\infty}$$
, we can easily show that

$$||x^{(i)} - x|| \to 0 \text{ as } i \to \infty$$
.

Now, we have to show that $x \in V_{\infty}$. Since $(x^{(i)} \text{ is a Cauchy sequence, given } \varepsilon$ > 0, there is a positive integer N depending upon ε such that, for each *i*, r > N,

$$\|x^{(i)}-x^{(r)}\| \varepsilon$$

Hence

$$\sup_{m,n} |t_{mn}(x^{(i)}-x^{(r)})| < \varepsilon.$$

This implies that

$$|t_{mn}(x^{(i)} - x^{(r)}| < \varepsilon, \tag{2}$$

for each m, n; or

$$|L^{(i)} - L^{(r)}| < \varepsilon \tag{3}$$

for each *i*, r > N; where $L^{(i)} = \sigma - \lim x^{(i)}$. Let $L = \lim_{r \to \infty} L^{(r)}$. Then the σ -mean of *x*, $\phi(x) = \lim_{i} \phi(x^{(i)}) = \lim_{i} L^{(i)} = L$. Letting $r \to \infty$ in (2) and (3), we get

$$|t_{mn}(x^{(l)}-x)| \le \varepsilon$$
, for each m, n ; (4)

and

$$|L^{(i)} - L| \le \varepsilon, \tag{5}$$

for i > N. Now, fix i in the above inequalities. Since $x^{(i)} \in V_{\infty}$ for fixed i, we obtain

$$\lim_{m} t_{mn}(x^{(i)}) = L^{(i)}, \text{ uniformly in } n.$$

Hence, for a given ε , there exists a positive integer m_0 (depending upon i and ε but not on *n*) such that

$$|t_{mn}(x^{(i)} - L^{(i)}| < \varepsilon, \tag{6}$$

for $m \ge m_0$ for all *n*. Now, by (4), (5) and (6), we get

$$|t_{mn}(x) - L| \le |t_{mn}(x) - t_{mn}(x^{(i)})| + |t_{mn}(x^{(i)}) - L^{(i)}| + |L^{(i)} - L| < 3\varepsilon,$$

for $m \ge m_0$ and for all *n*. Hence $x \in V_{\sigma}$. Since $V_{\sigma} \subseteq V_{\infty}$, $x \in V_{\infty}$. This completes the proof of the theorem.

Let Ax be defined. Then, for all $m, n \ge 0$, we write

$$t_{mn}(Ax) = \sum_{k=1}^{\infty} t(n,k,m) x_k ,$$

where,

$$t(n,k,m) = \frac{1}{m+1} \sum_{j=0}^{\infty} a(\sigma^{j}(n),k),$$

and a(n, k) denotes the element a_{nk} of the matrix A.

Theorem 2

 $A \in (l_{\infty}, V_{\infty})$ if and only if

$$\sup_{m,n} \sum_{k} |t(n,k,m)| < \infty.$$
(7)

Proof

Sufficiency. Let (7) hold and $x \in l_{\infty}$. Then we have

$$|t_{mn}(Ax)| \leq \sum_{k} |t(n,k,m)x_{k}|$$

$$\leq (\sum_{k} |t(n,k,m)|) (\sup_{k} |x_{k}|).$$

Now, taking the supremum over *m*, *n* on both sides, we get $Ax \in V_{\infty}$ for $x \in l_{\infty}$, *i.e.*, $A \in (l_{\infty}, V_{\infty})$.

Necessity. Let $A \in (l_{\infty}, V_{\infty})$. Write $q_n(x) = \sup_m |t_{mn}(Ax)|$. It is easy to see that for $n \ge 0$, q_n is a continuous seminorm on l_{∞} and (q_n) is pointwise bounded on l_{∞} . Suppose (7) is not true. Then there exists $x \in l_{\infty}$ with $\sup_n q_n(x) = \infty$. By the principle of condensation of singularities^[5], the set

$$\{x \in l_{\infty} : \sup_{n} q_{n}(x) = \infty\}$$

is of second category in l_{∞} and hence nonempty, that is, there is $x \in l_{\infty}$ with $\sup_n q_n(x) = \infty$. But this contradicts the fact that (q_n) is pointwise bounded on l_{∞} . Now, by the Banach-Steinhauss theorem, there is a constant *M* such that

$$q_n(x) \le M \|x\|_1. \tag{8}$$

Now define a sequence $x = (x_k)$ by

$$x_k = \begin{cases} \text{sgn } t(n,k,m) & \text{for each } n,m \text{ and } 1 \le k \le k_0, \\ 0 & \text{for } k > k_0. \end{cases}$$

Then $x \in l_{\infty}$. Applying this sequence to (8), we get (7).

This completes the proof of the theorem.

If σ is a translation, then by the above theorem, we obtain

Corollary 3

 $A \in (l_{\infty}, f_{\infty})$ if and only if

$$\sup_{m,n} \sum_{k} \frac{1}{m+1} |\sum_{j=0}^{m} a_{n+j,k}| < \infty.$$

Theorem 4

 $A \in (l_1, V_{\infty})$ if and only if

$$\sup_{n,k,m} |t(n,k,m)| < \infty.$$
(9)

Proof

Sufficiency. Suppose that $x = (x_k) \in l_1$. We have

$$t_{mn}(Ax) \mid \leq \sum_{k} \mid t(n,k,m)x_{k} \mid$$

$$\leq (\sup_{k} \mid t(n,k,m) \mid) \ (\sum_{k} \mid x_{k} \mid).$$

Taking the supremum over *n*, *m* on both sides and using (9), we get $Ax \in V_{\infty}$ for $x \in l_1$.

Necessity. Let us define a continuous linear functional Q_{mn} on l_1 by

$$Q_{mn}(x) = \sum_{k} t(n,k,m)x_k.$$

Now,

$$Q_{mn}(x) \leq \sup_{k} |t(n,k,m)| \parallel x \parallel_1$$

and hence

$$\|Q_{m,n}\| \le \sup_{k} |t(n,k,m)|.$$
(10)

For any fixed $k \in \mathbb{N}$, define $x = (x_i)$ by

$$x_i = \begin{cases} \text{sgn } t(n,k,m) & \text{for } i = k, \\ 0 & \text{for } i \neq k. \end{cases}$$

Then $||x||_1 = 1$, and

$$|Q_{mn}(x)| = |t(n,k,m)x_k|$$

= $|t(n,k,m)| ||x||_1$,

hence

$$||Q_{mn}(x)|| \ge \sup_{k} |t(n,k,m)|.$$
 (11)

By (10) and (11), we get

$$\|Q_{mn}(x)\| = \sup_{k} |t(n,k,m)|.$$

Since $A \in (l_1, V_{\infty})$, we have, for $x \in l_1$,

$$\sup_{m,n} |Q_{m,n}(x)| = \sup_{m,n} |\sum_{k} t(n,k,m)x_k| < \infty.$$

Hence, by the uniform boundedness principle, we have

 $\sup_{m,n} ||Q_{m,n}(x)|| = \sup_{m,n,k} |t(n,k,m)| < \infty.$

This complete the proof of the theorem.

If we take $\sigma(n) = n + 1$ in the above theorem, we get

Corollary 5

 $A \in (l_1, f_{\infty})$ if and only if

$$\sup_{n,k,m} \frac{1}{m+1} |\sum_{j=0}^{m} a_{n+j,k}| < \infty.$$

References

- Lorentz, G.G., A contribution to the theory of divergent sequences, *Acta Math.*, 80: 167-190 (1948).
- Mursaleen, On some new invariant matrix method of summability, *Quart. J. Math. Oxford*, 34: (2) 77-86 (1983).
- [3] Yosida, K., Functional Analysis, Springer Verlag, Berlin, Heidelberg, New York (1971).
- [4] Mursaleen, Gaur, A.K. and Chishti, T.A., On some new sequence spaces of invariant means, *Acta Math. Hung.*, **75**: 209-214 (1997).
- [5] Schaefer, P., Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36: 104-110 (1972).

44

المستخلص. في هذا البحث تم تعريف الفراغ $_{\infty}\Lambda$ من خلال مفهوم (Invariant Means) ويشبت أن هدذا الفراغ هو من فراغات باناخ (Banach Space). أيضًا نقوم بتصنيف الفراغات ($_{\infty}\Lambda$, $_{\infty}$) و ($_{\infty}\Lambda$, $_{1}$).