Matrix Transformation into a New Sequence Space Related to Invariant Means

Adnan Alhomaidan
Department of Mathematics, Faculty of Science, King Abdulaziz University P.O. Box 80081, Jeddah 21589, Saudi Arabia
alhomaidana@yahoo.com

Abstract

In this paper we define a sequence space V_{∞} through the concept of invariant means and prove that this is a Banach space under certain norm. We further characterize the matrix classes $\left(l_{\infty}\right.$, $\left.V_{\infty}\right)$ and $\left(l_{1}, V_{\infty}\right)$.

AMS subject classification: $40 \mathrm{H} 05,46 \mathrm{~A} 45$.
Keywords: Sequence spaces, invariant mean, matrix transformations.

Introduction and Preliminaries

Let l_{∞} and c be the Banach spaces of bounded and convergent sequences $x=$ $\left(x_{k}\right)$ respectively with norm $\|x\|_{\infty}=\sup _{k \geq 0}\left|x_{k}\right|$, and l_{1} be the space of absolutely convergent series with $\|x\|_{1}=\sum_{k}\left|x_{k}\right|$.

Let σ be a mapping of the set of positive integers \mathbb{N} into itself. A continuous linear functional ϕ on l_{∞} is said to be an invariant mean or a σ-mean if and only if, (i) $\phi(x) \geq 0$ when the sequence $x=\left(x_{k}\right)$ has $x_{k} \geq 0$ for all k, (ii) $\phi(e)=1$, where $e=(1,1,1, \cdots)$, and (iii) $\phi(T x)=\phi(x)$ for all $x \in l_{\infty}$, where $T x=\left(T x_{k}\right)=$ $\left(x_{\sigma(k)}\right)$. In case σ is the translation mapping $k \rightarrow k+1$, a σ-mean is often called a Banach limit ${ }^{[1]}$ and V_{σ}, the set of bounded sequences all of whose invariant means are equal, is the set f of almost convergent sequences ${ }^{[2]}$.

Note that ${ }^{[3]}$,

$$
V_{\sigma}:=\left\{x \in l_{\infty}: \lim _{m} t_{m n}(x)=L \text { uniformly in } n, L=\sigma-\lim x\right\},
$$

where

$$
t_{m n}(x)=\left(x_{n}+T x_{n}+\cdots+T^{m} x_{n}\right) /(m+1)
$$

and

$$
t_{-1, n}=0
$$

A σ-mean extends the limit functional on c in the sense that $\phi(x)=\lim x$ for all $x \in c$ if and only if σ has no finite orbits, that is to say, if and only if, for all $n \geq 0, m \geq 1, \sigma^{m}(n) \neq n$ (see Ref. [4]).

We say that a bounded sequence x is σ-convergent if and only if $x \in V_{\sigma}$ such that $\sigma^{m}(n) \neq n$ for all $n \geq 0, m \geq 1$ (see Ref. [5]).

Let X and Y be two sequence spaces and $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ be an infinite matrix of real complex numbers. We write $A x=\left(A_{n}(x)\right)$ where $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ and the series converges for each n. If $x=\left(x_{k}\right) \in X$ implies that $A x \in Y$, then we say that A defines a matrix transformation from X into Y. By (X, Y) we denote the class of matrices A such that $A x \in Y$ for $x \in X$.

In this paper we define a new sequence space V_{∞} related to the concept of σ mean and prove that V_{∞} in a Banach space under certain norm. We also characterize the matrices of the class $\left(l_{\infty}, V_{\infty}\right)$ and $\left(l_{1}, V_{\infty}\right)$.

We define the space V_{∞} as follows

$$
V_{\infty}:=\left\{x \in l_{\infty}: \sup _{m, n}\left|t_{m n}(x)\right|<\infty\right\} .
$$

Note that if σ is a translation then V_{∞} is reduced to the space

$$
f_{\infty}:=\left\{x \in l_{\infty}: \sup _{m, n}\left|g_{m n}(x)\right|<\infty\right\} .
$$

where

$$
g_{m n}(x)=\frac{1}{m+1} \sum_{k=0}^{\infty} x_{k+n}
$$

We call the space V_{∞} as the space of σ-bounded sequences. It is clear that $c \subset V_{\sigma} \subset V_{\infty} \subset l_{\infty}$.

Results

Theorem 1

V_{∞} is a Banach space normed by

$$
\begin{equation*}
\|x\|=\sup _{m, n}\left|t_{m n}(x)\right| \tag{1}
\end{equation*}
$$

Proof

It is easy to see that V_{∞} is a normed linear space under the norm in (1).
Now we have to show the completeness of V_{∞}. Let $\left(x^{(i)}\right)_{i=1}^{\infty}$ be a Cauchy sequence in V_{∞}. Then $\left(x_{k}^{(i)}\right) \underset{i=1}{\infty}$ is Cauchy sequence in \mathbb{R} for each k and hence convergent in \mathbb{R} that is, $x_{x}^{(i)} \rightarrow x_{k}$, say, as $i \rightarrow \infty$. Let $x=\left(x_{k}\right)_{k=1}^{\infty}$. Then by the definition of norm on V_{∞}, we can easily show that

$$
\left\|x^{(i)}-x\right\| \rightarrow 0 \text { as } i \rightarrow \infty
$$

Now, we have to show that $x \in V_{\infty}$. Since $\left(x^{(i)}\right.$ is a Cauchy sequence, given ε >0, there is a positive integer N depending upon ε such that, for each $i, r>N$,

$$
\left\|x^{(i)}-x^{(r)}\right\| \varepsilon
$$

Hence

$$
\sup _{m, n}\left|t_{m n}\left(x^{(i)}-x^{(r)}\right)\right|<\varepsilon .
$$

This implies that

$$
\begin{equation*}
\mid t_{m n}\left(x^{(i)}-x^{(r)} \mid<\varepsilon\right. \tag{2}
\end{equation*}
$$

for each m, n; or

$$
\begin{equation*}
\left|L^{(i)}-L^{(r)}\right|<\varepsilon \tag{3}
\end{equation*}
$$

for each $i, r>N$; where $L^{(i)}=\sigma-\lim x^{(i)}$. Let $L=\lim _{r \rightarrow \infty} L^{(r)}$. Then the σ mean of $x, \phi(x)=\lim _{i} \phi\left(x^{(i)}\right)=\lim _{i} L^{(i)}=L$. Letting $r \rightarrow \infty$ in (2) and (3), we get

$$
\begin{equation*}
\left|t_{m n}\left(x^{(i)}-x\right)\right| \leq \varepsilon, \text { for each } m, n \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|L^{(i)}-L\right| \leq \varepsilon \tag{5}
\end{equation*}
$$

for $i>N$. Now, fix i in the above inequalities. Since $x^{(i)} \in V_{\infty}$ for fixed i, we obtain

$$
\lim _{m} t_{m n}\left(x^{(i)}\right)=L^{(i)}, \text { uniformly in } n
$$

Hence, for a given ε, there exists a positive integer m_{0} (depending upon i and ε but not on n) such that

$$
\begin{equation*}
\mid t_{m n}\left(x^{(i)}-L^{(i)} \mid<\varepsilon\right. \tag{6}
\end{equation*}
$$

for $m \geq m_{0}$ for all n. Now, by (4), (5) and (6), we get

$$
\left|t_{m n}(x)-L\right| \leq\left|t_{m n}(x)-t_{m n}\left(x^{(i)}\right)\right|+\left|t_{m n}\left(x^{(i)}\right)-L^{(i)}\right|+\left|L^{(i)}-L\right|<3 \varepsilon
$$

for $m \geq m_{0}$ and for all n. Hence $x \in V_{\sigma}$. Since $V_{\sigma} \subset V_{\infty}, x \in V_{\infty}$. This completes the proof of the theorem.

Let $A x$ be defined. Then, for all $m, n \geq 0$, we write

$$
t_{m n}(A x)=\sum_{k=1}^{\infty} t(n, k, m) x_{k}
$$

where,

$$
t(n, k, m)=\frac{1}{m+1} \sum_{j=0}^{\infty} a\left(\sigma^{j}(n), k\right)
$$

and $a(n, k)$ denotes the element $a_{n k}$ of the matrix A.

Theorem 2

$A \in\left(l_{\infty}, V_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{m, n} \sum_{k}|t(n, k, m)|<\infty . \tag{7}
\end{equation*}
$$

Proof

Sufficiency. Let (7) hold and $x \in l_{\infty}$. Then we have

$$
\begin{aligned}
\left|t_{m n}(A x)\right| & \leq \sum_{k}\left|t(n, k, m) x_{k}\right| \\
& \leq\left(\sum_{k}|t(n, k, m)|\right)\left(\sup _{k}\left|x_{k}\right|\right) .
\end{aligned}
$$

Now, taking the supremum over m, n on both sides, we get $A x \in V_{\infty}$ for $x \in l_{\infty}$, i.e., $A \in\left(l_{\infty}, V_{\infty}\right)$.

Necessity. Let $A \in\left(l_{\infty}, V_{\infty}\right)$. Write $q_{n}(x)=\sup _{m}\left|t_{m n}(A x)\right|$. It is easy to see that for $n \geq 0, q_{n}$ is a continuous seminorm on l_{∞} and $\left(q_{n}\right)$ is pointwise bounded on l_{∞}. Suppose (7) is not true. Then there exists $x \in l_{\infty}$ with $\sup _{n} q_{n}(x)=\infty$. By the principle of condensation of singularities ${ }^{[5]}$, the set

$$
\left\{x \in l_{\infty}: \sup _{n} q_{n}(x)=\infty\right\}
$$

is of second category in l_{∞} and hence nonempty, that is, there is $x \in l_{\infty}$ with $\sup _{n}$ $q_{n}(x)=\infty$. But this contradicts the fact that $\left(q_{n}\right)$ is pointwise bounded on l_{∞}. Now, by the Banach-Steinhauss theorem, there is a constant M such that

$$
\begin{equation*}
q_{n}(x) \leq M\|x\|_{1} \tag{8}
\end{equation*}
$$

Now define a sequence $x=\left(x_{k}\right)$ by

$$
x_{k}= \begin{cases}\operatorname{sgn} t(n, k, m) & \text { for each } n, m \text { and } 1 \leq k \leq k_{0} \\ 0 & \text { for } k>k_{0}\end{cases}
$$

Then $x \in l_{\infty}$. Applying this sequence to (8), we get (7).
This completes the proof of the theorem.
If σ is a translation, then by the above theorem, we obtain

Corollary 3

$A \in\left(l_{\infty}, f_{\infty}\right)$ if and only if

$$
\sup _{m, n} \sum_{k} \frac{1}{m+1}\left|\sum_{j=0}^{m} a_{n+j, k}\right|<\infty .
$$

Theorem 4

$A \in\left(l_{1}, V_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k, m}|t(n, k, m)|<\infty . \tag{9}
\end{equation*}
$$

Proof

Sufficiency. Suppose that $x=\left(x_{k}\right) \in l_{1}$. We have

$$
\begin{aligned}
\left|t_{m n}(A x)\right| & \leq \sum_{k}\left|t(n, k, m) x_{k}\right| \\
& \leq\left(\sup _{k}|t(n, k, m)|\right)\left(\sum_{k}\left|x_{k}\right|\right) .
\end{aligned}
$$

Taking the supremum over n, m on both sides and using (9), we get $A x \in V_{\infty}$ for $x \in l_{1}$.

Necessity. Let us define a continuous linear functional $Q_{m n}$ on l_{1} by

$$
Q_{m n}(x)=\sum_{k} t(n, k, m) x_{k}
$$

Now,

$$
\left|Q_{m n}(x)\right| \leq \sup _{k}|t(n, k, m)|\|x\|_{1} .
$$

and hence

$$
\begin{equation*}
\left\|Q_{m, n}\right\| \leq \sup _{k}|t(n, k, m)| \tag{10}
\end{equation*}
$$

For any fixed $k \in \mathbb{N}$, define $x=\left(x_{i}\right)$ by

$$
x_{i}= \begin{cases}\operatorname{sgn} t(n, k, m) & \text { for } i=k \\ 0 & \text { for } i \neq k\end{cases}
$$

Then $\|x\|_{1}=1$, and

$$
\begin{aligned}
\left|Q_{m n}(x)\right| & =\left|t(n, k, m) x_{k}\right| \\
& =|t(n, k, m)|\|x\|_{1},
\end{aligned}
$$

hence

$$
\begin{equation*}
\left\|Q_{m n}(x)\right\| \geq \sup _{k}|t(n, k, m)| . \tag{11}
\end{equation*}
$$

By (10) and (11), we get

$$
\left\|Q_{m n}(x)\right\|=\sup _{k} \mid t(n, k, m) .
$$

Since $A \in\left(l_{1}, V_{\infty}\right)$, we have, for $x \in l_{1}$,

$$
\sup _{m, n}\left|Q_{m, n}(x)\right|=\sup _{m, n}\left|\sum_{k} t(n, k, m) x_{k}\right|<\infty .
$$

Hence, by the uniform boundedness principle, we have

$$
\sup _{m, n}\left\|Q_{m, n}(x)\right\|=\sup _{m, n, k}|t(n, k, m)|<\infty
$$

This complete the proof of the theorem.
If we take $\sigma(n)=n+1$ in the above theorem, we get

Corollary 5

$A \in\left(l_{1}, f_{\infty}\right)$ if and only if

$$
\sup _{n, k, m} \frac{1}{m+1}\left|\sum_{j=0}^{m} a_{n+j, k}\right|<\infty
$$

References

[1] Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math., 80: 167190 (1948).
[2] Mursaleen, On some new invariant matrix method of summability, Quart. J. Math. Oxford, 34: (2) 77-86 (1983).
[3] Yosida, K., Functional Analysis, Springer Verlag, Berlin, Heidelberg, New York (1971).
[4] Mursaleen, Gaur, A.K. and Chishti, T.A., On some new sequence spaces of invariant means, Acta Math. Hung., 75: 209-214 (1997).
[5] Schaefer, P., Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36: 104-110 (1972).

محول المصفوفات إلى فراغ متسلسلات جديد

$$
\begin{aligned}
& \text { عدنان الحميدان }
\end{aligned}
$$

جــــــة - المملكة العربية السعودية
alhomaidana@yahoo.com
المستخاص. في هذا البحث تم تعريف الفـراغ

