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ABSTRACT. In this paper we reduce the study of connected Lie groups to
the study of connected Lie groups with no compact normal semisimple sub-
groups. We also reduce the study <?f ZM(G) to the study of ZGM(B(G», the
algebra of G-invariant bounded measures on the given characteristics sub-
group B(G) of G. Finally, B(G)

(1) -+ Tk -+ B(G) -+ Rm x D -+ (1)

Where T.is the unit circle in the complex plane and D is a discrete finitely
generated abelian group.

1. Introduction and Notations

We denote the Banach space of complex, finite, regular, Borel measures on a locally
compact Hausdorff space X by M(X).

If S is a locally compact topological semigroup, then M(S) is a Banach algebra
under theoperation(fL, v)-'-';. fL * v (convolution) defined by the condition

(1.1) f f d fL * v = if f(st) d fL(S) d v(t) ,IE Co(S)

Recall that M( S) is the dual space of C o( S), the space of continuous functions vanish-
ing at infinity on S,. hence (1.1) defines a measure (J * v in M(S).

It is well known that convolution is associatjve and distributive and satisfies II fL * v II
= II fL \I II v II. Hence M(S) is a Banach algebra under convolution. Moreover, M{S) is
commutative if and only if S is abelian. Furthermore, ifS has an identity e,then the
point mass 8e at e is an identity for M(S).
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It follows from the standard facts o(integration theory that (1.1) holds for all
bounded Borel functions/if and only ifit holds for functions in Co(S). In particular,
with/;: XE,the characteristics function~, we have

(1.2) 1), * v(£) = f f XE(st) d 1),(s) dv(t)

IfG is a locally compact group, then the measure algebra M( G) has an identity Se
and the inversion map g --+ g-1 induces an involution 1), --+ii on M(G) defined by

ii(£) =1),(£-1).
The center ZM( G) of M( G) consists ?f all 1),EM(G) such that 1), * v = v * 1), for all VE

M(G). Then ZM( GJ is a commutative Banach algebra under convolution even
though the underlying group G need not be commutative.

2. The Operator U#

Let G be a locally compact group. For a compact normal subgroup K or G, let W K
be the normalized Haar measure over K. Hence we shall write

(2.1) wK(f)=fKf(t)dt, feCo(G)

Lemma 2.1

Let G be a locally compact group, then for any compact subgroup K of G, we have,

WK eZM(G).

Proof

SincewKis the Haarmeasure on K, then wKisaLebesquemeasureon G, as thetri-
vial extension of WK on G, and

2) f f(xtx~l) dt = 11(x) f f(t) dt

ere 11 : G ~ R is the continuous homomorphism modular function corresponding

(2.2) f f(~tx-l)dt =:".:1(X) f f(f)dt

'where .:1 : G.,.-+ R is the continuous homomorphism modular function cprresponding
to wKon G.

Letf= xKbe the characteristic function of K. We havexKx-l = K, for each x inG,
since K is a normal subgroup. But then XK(xt;r-l) = XK(f). Thi~ implies

(2.3) fK XK(xtX"-l) dt= fK XK(f) dt, for each x in G.

Hence .:1(x),: 1, for each x inG,and

(2.4) fKf(xtx-l) dt = fK!Cf) dt , foreachfinC~(G).

Le, 8x ~ wK ~ 8x-1(f) = wK(f), for eachfinCo(G) and x inG, where 8xis the point
massatx.Hence 8x * WK ~- 8X~1 = WK' Sobyureenleaf, etal.[lJ, WKEZM(G).
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Corollary 2.2

For G, K and't as above, we have

(2.5) fKf(tx) dt = fKf(xt) dt, for each x in GandfinCo(G).

Now let Lx :f- fx -1 (respect. Rx :f-.f) be the left (respect. right) representation
ofG, wherefx(Y) = f(xy) andfx(y) = f(yx). Then Lx and Rx can be regarded as strong
continuous representations of G on Ll( G). So (2.5) can be rewritten as

(2.6) fKfX(t)dt = fKfx(t)dt, foreachfinCo(G)andxinG.

Also since the Haar measure, WK of the compact normal subgroup K of G, is in-
variant under translati?n, we get

(2.7) fKf(t) dt = fKfY(t) dt, for each fin Co(G),xin Gandyinx.

where x = Kx = { tx : tE K} .

Now iffis a continuous function on Gand XEG, we shall write

(2.8) f#(x) = f KfX(t) dt

Denote by U# the linear mappingf -f#. The following is a slight extension of a re-
sult due to Halmosl2] (see Theorem D p. 279).

Proposition 2.3

Let G,K and U# be as above, then

(1) f#is continuous. Iffis left (resp. right) uniformly continuous, so isf#.
(2) Iffis bounded, so isf# and 11f#.IIG'K ~ IlflIG'
(3) Iffis positive definite, so isf#.
(4) Iff E Co(G), thenf# E Co(G/K) and the linear mapping

U#: Cv(G)- Co(G/K)

is onto.

Proof

It is easy to see that the translation map KxG ~ G is continuous, since G is a to-
pological group. IfFis any compact set, KF = FK is also compact, since K is compact
and normal. Hence

If#IIKF = sup {If#(X)I:XEKF}.
= sup {I JKf(tx) dt I : XEKF}.

:!;o sup {JK I/(tx) I dt : XEKF}.
:s sup { I/(tx) I : t E K and x E F

.= IIfllKF < 00

Applying the above relation, to F = {x }, shows thatf'# is well-defined and thatfis

bounded. Therefore, II f'# IIG'K:!;o II f IIG.
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It is clear that if the supportoffis compact, then the support off# is contained in
the compact set KF. For the continuity, assume first that f is left uniformly continu-
ous and let e > O. Then there is a compact nei~bourhoodV of e in G such that y-t x eV
implies 1 fty),. f(x) 1< e. Now fOf each zeGwehave (zy)-1 zx = y-l xeV, i.e.] f(y) -f(x) I < e

implies I.f(zy) -Azx) 1< e, for each z in G. So y-1 xeV implies

I f#()i) -r(X) I = If K(f(ty). f(tx) ) dt I
..~ fK If(ty) -f(tx) I dt

~fKedt=e

Suppose now f is merely continuous and let xeG. If W is a fixed compact
neighbourhood of x, then V = KW is a compact neighbourhood of x such that txeV,
for each teK. By Urysohn's lemma, there is a (uniformly) coiUinuous function g with
compact support, ~hich is equal tofon V, hence

g#(X) = f Kg(tX) dt= f Kf(tX) dt == r(x)

Since g# is uniformly continuous, f# is continuous at x.

Itis obvious from the definition that iffis positive definite, then so isr. It is easy
now to see that whenever fvanisqes at infinity then so doesr, i.e. feCo(G) implies

reCo(G/K).
Let Qbe a Banach algebra, I be an ideal of Q and Z(Q) be thesubalgebra of all

central elements of Q. If jjQ (resp. M) is the spectrum of Q (resp. /) i.e. the set ofall
non-zero homomorphisms of Q (resp. /) onto C, then we have

Lemma 2..4

Let Q be a ~anach algebra and I be an ideal of Q. Then

M= { hejjQ : h(/) ,= 0 }

Proof
Let hELl!, then there is ajE I such that h(j)= 1 (otherwise h(J) = O):So, for every

ainQ, definehQ(a) = h(aj).ThenitiseasytocheckthathQisahomomorphismofQ,
and where hQll = h. So the restriction map: LlQ -111 is onto and the lemma follows

easily.

Suppose now that V: M(GIK)-. M(G) is the adjoint mapping of VI': Co(G)-. Co(GIK),
i.e. for any measure A.eM( 01 K) and any continuous tunctionfeCo( 0), we have U(A.).(f) = A.(1#). In other words, IflL = U(A.) eM(O) andfECo(O), we get

(2.9) f G.f(x) dlL(x) = f GIK f K.f(tx) dt dA.(x)

We conclude this section by the following theorem which we need later.

Theorem 2.5

Let 0 be a locally compact group and K be a compact normal subgroup of O. Then
there exists a Banach algebra homomorphism which maps M( 01 K) into M(O) and
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maps fJK, the identity ofM(G/K), to WK eM(G), the Haarmeasure ofK. Moreover,
we have

(1) M(G/K) = M(G) * WK' hence M(G/K) is an ideal ofM(G).
(2) ZM( G/K) = ZM( G) * W K' hence ZM( G/ K) is an ideal of ZM( G).
(3) J1M(GIK) = {he J1M(G) : h(WK) = 1}. '
(4) J1ZM(G/K) = {heJ1ZM(G): h(WK) = 1}.

Proof

Suppose that V: M(G/K)- M(G) is the adjoint mapping of Vii': Co(G)- Co(G/
K), see prop. 2.3 and equation (2.9) above. Since Vii' is a linear mapping which is
onto this implies that V is a linear mapping and that V is one -to -one.

To show that V preserves the convolution, one needs to observe that whenever
IL = V(A) for some AeM(G/K), then 1L(f) = A(f#) foraUfinCo(G), i.e. (2.9) is given.
Now for AI, AzeM(G/K), let ILl' lLzeM(G) such that ILl = V(AJ and ILz = V(Az). Also
let IL = V(AI * Az}. So we need to prove that IL = ILl * 1L2' i.e. U(AI * Az} = V(AJ * U(>..z).

For this purpose, letfeCo(G), then

ILl * ILz(f) = f 0 f 0 f(xy) dILl (x) dlLz(y)
= f o'{ f of'(x) dILl (x) } dlLz(y)

Let g(y) = f GfY(x) dlLl(X), thus, by definition of ILl' one gets

g(y) = fGIKfKfY(tx)dtdAl(X)
= ~GIK f Kf(txy) dt dAl(X)

It is easy to see that g(sy) = g(y), for each s in K, since the Haar measure is trans.
lation invariant modulo K.

Now
ILl * 1L2(f) = f G { f G fY (x) dILl (x) } dIL2(y)

= fGg(y) dlJ.z(y)
= f GIK f K g(sy) ds dA2(}i) , (since IJ.z = U(Az»
= f GJ.K g(y) dA2(}i)

Since the Haar measure is normalized and g is K-invariant. Hence

ILl * 1J.z(f) = f GIK f GIKf#<XY> dAl(::i) dA2(}i)

And since xy = xy, we get

ILl * JLz(f) = fGIKfGIKf#(XY)dAl(X)dA2(Y)
= (AI * Az) cr)
= U(AI * Az} (f)

Buttis an arbitrary continuous function in Co(G), so we have

U(AJ * U(Az} =i= ILl * JLz = U(AI * Az}
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Hence U is a Banach algebra homomorphism.

(1) It is easy to see that for any measure v, veM(G) * wK = {JL * wK: JLeM(G)} if
and only if v = v * WK (since WK is idempotent).

Now let AeM(G/,K) and JL = U(A)eM(G). Then for any feCo(G), we have

JL * WK(f) = WK * JL(f)
= f C f Kf(tx) dt dJL(x)
= fcf(x) dJL(x)

Let g(x) = f#(X) for each x in X, then g is constant on each coset x = Kx. Also g is an
elem~ntof Co(G), sincefis. Moreover g# (X) = f#(X) = g(x),foreachxinx, for each
x in G/ K. Now we can write

JL * Wk(f) = f cf# (X) dJL(x)
= fag(x) dJL(x)
= fclKg# (X) dA(X) (see JL = U(A»

[see (2.8) and (2.9)]
= fOIKf# (X) dA(X)
= fof(x) dJL(x) [by (2.8) and (2.8)]
= JL(f) .

But this means that JL * WK = JL, i.e. U(A) * WK = U(A) for any AeM(GIK). SO U(M(GIK»
= M(G) * WK and hence M(GIK) can be regarded as an ideal of M(G).

(2) Let AeZM(GIK), x in G andfin Co(G) be arbitrary elements.
Then .

8x * U(A) * &-1 (1) = f Gf(xyx-l) dU(A) (y)
= fGIKfKf(xtyx-l)dtdA(Y)

Since the Haar measure WK is central, we get

8x * U(A) * 8X-1 (f) = f GIK f Kf(txyx-l) dtdA(Y)
= fGIKf#(ijii-I) dA(ji)
= (8 * A * 8X-1 (/#)

As AeZM(G/K), thus 8x- * A * 8X-1 = A, and 8x *U(A) * &-1 (1) = A(f#) = U(A) (1).
Therefore U(A) eZM(G). Hence we have ZM(G/K) ~ ZM(G) * WK.

To prove (3) and (4), let I = M(G/K) ~ M(G) * wKandj = ZM(G/K) ~ZM(G) *

WK. Then lis an ideal of M(G) andJis an ideal ofZM(G). Applying lemma 2.5, we
get heM (resp. heM) if and only h(I) ~ 0 (resp. h(J) ~ 0). Hence (in: both cases)
h( W K) ~ O. But W K is idempotent, so h( W K) = 1, as required.

3. The Reduction of G

In this section we use Ragozin's work[3], to reduce the general ca~e, where G is a
connected Lie group; to the case where a connected Lie group has no normal com-
pact semisimple connected subgroup.
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The next theorem is proved by Iwasawa[4], theorem 2, p. 515

TheoreJD 3.1

Let G be a connected topological group and K a compact normal subgroup of G. If
we denote by Z( G, K) the centralizer of KinG; we have

G = K.Z(G,K)

Lemma 3.2

lf G is a connected Lie group, then G contains a maximal compact normal
semisimple (so connected) subgroup (which may be (1)).

Proof
LetQ be a semilattice of compact normal semisimple (connected) subgroups of G,

then Q has a zero as follows: let n be the maximum dimension of elements of Q and
K' be an element of Q with dimensionn. Then if K is in Q, KK' is in Q and KK' con-
tains K'. But dim(KK') ~ dim(K'). So KK' = K'.

Thus K' is a zero of Q and is the required maximal subgroup of G.

Theorem 3.3

If G is a connected Lie group, and K is the maximal compact normal semisimple
subgroup of G, then

G = (KxZ(G,K)o)/F

where Z(G,K)o is the connected component of Z(G,K), the centralizer of Kin G,
and Fis a finite subgroup of Z(K), the center of K.

Proof
We have, see theorem 3.1 above, that G = K.Z( G,K), since K is a compact normal sub-

group. Now let p : G -+ G/K be the projection map. Then we have p :Z(G,K) -+ G/K
is onto. By the open mapping theorem, it. follows that p is an open map. Since
Z(G,K)ois open in Z(G,K), thereforep(Z(G,K)o) is open in G/K. Hence it is clear
now that G = K..Z(G,K)o. We also have KnZ(G,K) = Z(K). So KnZ(G,K)o = Fis

a finite subgroup of Z(K).

Now we can .write G as the direct product KxZ(G,K)o modulo F, i.e.
G = (KxZ(G,K)o)/F.

Now let WF be the Haar measure on F. In this case we have:

Theorem 3.4

For G, Kand Fas above
(1) ZM(G) == ZM(KxZ(G,H)o) * WF .
(2) .1ZM(G) = {hE.1ZM(KxZ(G,K)o) : h(WF) = I}.
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Proof

Since F is a finite central subgroup of K, the maximal compact normal semisimple
subgroup of G, therefore Fis a compact normal subgroup of KxZ(G,K)o' Applying
(2) and (4) of theorem 2.6, the proof follows easily.

By 3..4, if we knowL1ZM(KxZ(G,K)o)' we know L1ZM(G). But results of Rago-
zin[5] redu~e the study of L1ZM(KxZ(G,K)o) to the sudy of L1ZM(Z(G,K)o). In fact
concerning the spectrum (the maximal ideal space) of ZM(SxH), the center of the
measure algebra ofSxHwhere S is a compact simple Lie group and H an arbitrary
tocally compact group, it hasbe~n proved that:

L1ZM(SxH} = L1ZM(S) xL1ZM(H)

(This together with earlier results of Ragozin[3], yield a complete description of the
spectIuO1 L1ZM(K) for any compact connected semisimple Lie group (K).

Ragoziw3] , shows that ifS is a compact simple Lie group, then:

L1M(S) = SUZ

where Z is the center of Sand S (resp. Z) is the dual space of S (resp. Z).

So we need to study ZM(G), where G(=Z(G,K)o) is a connected Lie group with

no compact normal semisimple subgroups.

Standing Assumption 3.5

In the remai~der of this paper, G will be a connected Lie group with no compact
normal semisimpl.e subgroups.

4. The Structure of B(G)

In this section as a conclusion, we reduce the study of ZM( G), by Greenleat1I], to
the study of ZG M( B( G», the algebra of G-invariant bounded measures on B( G), the
subgroup of G of elements with relatively compact conjugacy classes. We also define
the structure of B( G).

Titsin[6], theorem (1) and c01011ary (1), shows that if G is a connected locally com-
pact group, then B( G), the subgroup of G of elements with relatively compact conju-
gacy clnsses, is a closed characteristic subgroup in G.

.If we consider G/ K,where K is the maximal connected compact normal subgroup,
then, according to theorem (1) of Tits[6],

B(G/K) = B(G/K)o' Z(G/K)

SinceB{G/K)o is a vector group and Z(G/K) is compactly generated, therefore B(G/K)
is a compactly generatoo abelian group. Now B(G/K) has no compact connected
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subgroup. Hence B(G/K) = V x D, where Vis a vector$,roup (Rm for some integer
m) and D is a discrete finitely generated abelian group on which the G-inner au-
tomorphisms act trivially.

Hence if G isa connected Lie group, then B(G) satisfies the exact sequence

(1) -.". K -.". B(G) -.". Rm x D -.". (1)

where Kis the maximal compact connected normal subgroup of G and D is finitely
generated abelian and central in G/ K. In our case, G contains no compact normal
semisimble subgroup. Thus K = Tk f<1r some integer k, where T is the unit circle in
the complex plane. But then Tk is central; so we will consider ZM( G) for G a con-
nected Lie group with no compact connected normal semisimple subgroup. For a G,
the subgroup B( G) satisfies the central exact sequence

(1) -.". Tk -.". B(G) -.". Rm x D -.". (1)
i.e. Tk is central, and B(G)/Tk ~ Rm x D. .

Greenleaf et al. [1] proved that all finite central measures on a connected Lie group
G are supported on the the closed subgroup B( G), i.e. ZM( G) = ZGM(B(G)). Sowe
need to study the algebra ZGM(B(G)), ofI(G)-invariant finite measures on B(G).
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