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"ABSTRACT. In this paper we reduce the study of connected Lie groups to
the study of connected Lie groups with no compact normal semisimple sub-
groups. We also reduce the study of ZM(G) to the study of ZCM(B(G)), the
algebra of G-invariant bounded measures on the given characteristics sub-
group B(G) of G. Finally, B(G) '
(1) > T* - B(G) » R™" x D - (1)

Where T is the unit circle in the complex plane and D is a discrete finitely
generated abelian group. )

1. Introduction and Notations

We denote the Banach space of complex, finite, regular, Borel measures on a locally
compact Hausdorff space X by M(X).

If S is a locally compact topological semigroup, then M(S) is a Banach algebra
under the operation (g, ¥) — p * v (convolution) defined by the condition -

an Jfdp=v=[[flst)du(s) dui),feC,(S)

Recall that M(S) is the dual space of C (), the space of continuous functions vanish-
ing at infinity on S; hence (1.1) defines a measure 8 * vin M(S).

It is well known that convolution is associative and distributive and satisfies || u * v |
= || w |||l v|l. Hence M(S) is a Banach algebra under convolution. Moreover, M(S) is
commutative if and only if S is abelian. Furthermore, if S has an identity e, then the
point mass 8, at e is an identity for M(S). :
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It follows from the standard facts of integration theory that (1.1) holds for all
bounded Borel functions fif and only if it holds for functions in C,(S). In particular,
with f = x, the characteristics function E, we have

(1.2) p*v(E) = [ [ xg(st) d u(s) d)

If G is a locally compact group, then the measure algebra M(G) has an identity 5,
and the mver§lon map g — g! induces an involution u —w on M(G) defined by
R(E) = W(E).

The center ZM(G) of M(G) consists of all ueM(G) such that p * v = v * pfor all ve
M(G). Then ZM(G) is a commutative Banach algebra under convolution even
though the underlying group G need not be commutative.

2. The Operator U*

- Let G be alocally compact group. For a compact normal subgroup K or G, letw,
be the normalized Haar measure over K. Hence we shall write

@.1 wi() =[x f()dt , feC(G)
Lemma 2.1

Let G be alocally compact group, then for any compact subgroup K of G, we have,
wy €ZM(G).

‘Proof

Since w is the Haar measure on K, then w is a Lebesque measure on G, as the tri-
vial extension of w; on G, and

2) . [ fxtx=Y) dt = A(x) | f(¢) dt

ere A : G — Ris the continuous homomorphism modular function corresponding

2.2) J flxtx~)y dt = A(x) TRty dt

‘where A : G — R is the continuous homomorphism modular function corresponding
towgon G.

Letf= XK be the characteristic functlon of K. We have xKx~! = K, foreachxin G,
since K is a normal subgroup. But then X (xtx- )= xi{(). This implies

2.3) fK XK(xtx yodt = [gx () dt, for eachxin G.
Hence A(x) = 1, for each x in G, and ' )
@.4) fK'f(Qctx-l) dt = [, f() dt, - for each fin C(G).

ie. 8, xwy*8~1(f) = wif), for each fin C, (G) and x in G, where 3, is the point
mass at x. Hence 8, * wy * 8x~!' = w,. So by Greenleaf, et al.l'}, wy eZM(G)
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Corollary 2.2
For G, K and t as above, we have
2.5) [ fix)dt = [ fixt) dt, for each x in G and fin C (G).

NowletL, : f—f, ~1 (respect. R, : f— f*) be the left (respect. right) representation
of G, where f,(y) = f(xy) and f*(y) = f(yx). Then L, and R, can be regarded as strong
continuous representations of G on L{G). So (2.5) can be rewritten as
2.6) [ f(®)dt = [,f@)dr, foreachfin C,(G)and xin G.

Also since the Haar measure, w, of the compact normal subgroup K of G, is in-
variant under translatign, we get 7
Q7 Sef(®dt = [, f@ar, for each fin C(G),xinGand y in x.
wherex = Kx ={tx:teK}.

Now if fis a continuous function on Gand xeG, we shall write

@8) fH(E) = [ f(t) dt
Denote by U* the linear mapping f— f*. The following is a slight extension of a re-
sult due to Halmosl?l (see Theorem D p. 279). .

Proposition 2.3
Let G,K and U * be as above, then

(1) f*is continuous. If fis left (resp. right) uniformly continuous, so is f*.
(2) If fis bounded, sois f* and || f* I, < || fll-
(3) If fis positive definite, so is f*. _
(4) If fe C (G), then f* € C (G/K) and the linear mapping
U*: C(G)— C(G/K)
is onto.

Proof

It is easy to see that the translation map KxG — G is continuous, since G is a to-
pological group. If Fis any compact set, KF = FK is also compact, since K is compact
and normal. Hence :
sup {|f*(x)|: x e KF}.
sup {| [y Atx) dt | : xeKF}.
sup { [ | Ax) | dt : xe KF}.
sup {|f(ex) | : teKandxeF
I flkr <

Applying the above relation, to F = { x }, shows that f* is well-defined and that fis
bounded. Therefore, || f* ||,k <l fll5

I F* lxr
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It is clear that if the support of fis compact, then the support of f* is contained in
the compact set KF. For the continuity, assume first that f'is left uniformly continu-
ous and let &€ > 0. Then there is a compact nelghbourhood V of e in G such that y-! x eV
implies | f{y) - f(x) | < . Now for each zeG we have (zy)™' zx = y~' xeV, i.e. | f(y) f(x) | <&
implies | Azy) - (zx) | < ¢, for each zin G. So y~! xeV implies

!f*('y‘) 2@ | = | [ (f(ty) - fiex) ) dt |
: < [ | Aty) - flex) | dt

< fyedt=¢

. Suppose now: f is merely continuous and let xeG. If W is a fixed compact
‘neighbourhood of x, then V = KW is a compact neighbourhood of x such that txeV,
for each teK. By Urysohn’s lemma, there is a (uniformly) continuous function g with
compact support, which is equal to fon V, hence

g*(x) = S g(tx) dt = [ fitx) dt = f#(x)
Since g* is uniformly continuous, f# is continuous at x.
It is obvious from the definition that if fis positive definite, then so is f*. It is easy

now to see that whenever f vanishes at infinity then so does f#, i.e. feC (G) implies
J*eC (G/K). '

Let Q be a Banach algebra, I be an ideal of Q and Z(Q) be the subalgebra of all
central elements of Q. If AQ (resp. Al) is the spectrum of Q (resp. [) i.e. the set of all
non-zero homomorphisms of Q (resp. /) onto C, then we have

Lemma 2.4
_Let O be a Banach algebra and I be an ideal of Q. Then
' Al = {heAQ : h(I) # 0}
Proof

Let heAl, then there is a j € I such that A(j) = 1 (otherwise h(I) = 0). So, for every
ain Q, define hy(a) = h(aj). Then itiseasy to check that h, is a homomorphism of O,
and where h,,; = h. So the restriction map : AQ — Alis onto and the lemma follows
easily.

Suppose now that U : M(G/K) — M(G) is the adjoint mapping of U* : C (G) - C, (G/K),
i.e. for any measure AeM(G/K) and any continuous function feC,(G), we have U(A)
() = A(f*). In other words, if o = U(A) e M(G) and feC,(G), we get

2.9 Jcfix) d“(x) = fG/K S Rix) dt dA(x)
We conclude this section by the following theorem which we need later. -
Theorem 2.5 '

Let G be a locally compact group and Kbe a compact normal subgroup of G. Then
there exists a Banach algebra homomorphism which maps M(G/K) into M (G) and
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maps &, the identity of M(G/K), to w, eM(G), the Haar measure of K. Moreover,
we have

(1) M(G/K) = M(G) * wy, hence M(G/K) is an ideal of M(G).

(2) ZM(G/K) = ZM(G) * wy, hence ZM(G/K) is an ideal of ZM(G)
(3) AM(G/K) = {he AM(G) : h(wy) =1}

(4) AZM(G/K) = {heAZM(G) : h(wy) =1}

Proof

Suppose that U : M(G/K) — M(G) is the adjoint mapping of U* : C (G) — C,(G/
K), see prop. 2.3 and equation (2.9) above. Since U* is a linear mapping which is
onto this implies that U is a linear mapping and that U is one - to - one.

To show that U preserves the convolution, one needs to observe that whenever
p = U(A) for some AeM(G/K), then u(f) = A(f*) for all fin C(G), i.e. (2.9) is given.
Now for A, A,eM(G/K), let u,, n,eM(G) such that u, = U(A,) and ., = U(A,). Also
let w = U(A, * A,). So we need to prove that u = u, * w,, i.e. U(A, * ) = U(A )= UQA).
For this purpose, let feC (G), then

*mw(f) = Jg fcf(x)’) dp,(x) dp,(»)
= f(; { fo x) dﬁ"l(x) } dl“z()’)

Let g(¥) = [ f’(x) du,(x), thus, by definition of u,, one gets

= fG/K f](fv(tx) dt d)‘l(;_)
= Jox Jx fltxy) dt dA (x)

It is easy to see that g(sy) = g(y), for each s in K, since the Haar measure is trans-
lation invariant modulo K.

Now
* (N = TS P(x) duy(x) } dpy(y)
= J58(y) dpm,(y)
= [k 8(sy)dsdr(y) , (sincepn, = U(A)))
= o 80) dA()

Since the Haar measure is normalized and g is K-invariant. Hence

V() = Jex Ja f* (3‘7) dA,(x) dry(y)

And since xy = xy, we get

* () fG/K S F*(xy) d)‘ 1(x) dA(9)

@, ) (")
U ) (0

But f is an arbitrary continuous function in C,(G), so we have

UA) *URA) = py*puy = U *)y)
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Hence U is a Banach algebra homomeorphism.

(It 1s easy to see th?t for any measure v, veM(G) * w, = { p * w : neM(G) } if
and only if v = v * w (since w, is idempotent).

Now let AeM(G/K) and p = U(A)eM(G). Then for any feC,(G), we have
p* wilf) wi * u(f)
o Jx f(tx) dt du(x)
S fx) du(x)
Let g(x) = f*(x) for each x in x, then g is constant on each coset x = Kx. Also gisan

element of C_(G), since fis. Moreover g* (x) = f*(x) = g(x), for each x inx, for each
x in G/K. Now we can write

o

prxw(f) = [of* () du(x)
= J58(x) du(x)
= Jox 8* (x) dA(x) (see p = U(A))
[see (2.8) and (2.9)]
= Jonf* (D) dAG)
=/ G(;;(X) dp(x) [by (2.8) and (2.8)]
= “ .

But this means that p * w,, = p, i.e. UQX) * w, = U(X) for any AeM(G/K). So U(M(G/K))
= M(G) * w, and hence M(G/K) can be regarded as an ideal of M(G).

(2) Let AeZM(G/K), x in G and fin C_(G) be arbitrary elements.
Then )

8. * UM *&x! () = Jgfleyx™!) dUW) ()

= IG/K fo(Xtyx_l) dt dAG’—)
Since the Haar measure w, is central, we get

8, x UN) * &x7! (f) = [gx Jx Kixyx™") dtdr(y)
| T f* %) dAG)
= (5 * A+ 85 ()
As AeZM(G/K), thus 8x~ * A * 8x~! = A, and &, * U(A) * 8x~1 (f) = A(f*) = U(A) (f).
Therefore U(A) eZM(G). Hence we have ZM(G/K) = ZM(G) * wy.

To prove (3) and (4), let I = M(G/K) = M(G) * wand J = ZM(G/K) =ZM(G) *
-wy. Then I is an ideal of M(G) and J is an'ideal of ZM(G). Applying lemma 2.5, we
get heAl (resp. heAJ) if and only h(I) # 0 (resp. h(J) # 0). Hence (in both cases)
h(w,) # 0. But w, is idempotent, so h(w,) = 1, as required.

3. The Reduction of G

In this section we use Ragozin’s workl®l, to reduce the general case, where G is a
connected Lie group, to the case where a connected Lie group has no normal com-
pact semisimple connected subgroup.
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The next theorem is proved by Iwasawal¥l, theorem 2, p. 515
Theorem 3.1 -

Let G be a connected topological group and K a compact normal subgroup of G. If
we denote by Z(G, K) the centralizer of K in-G; we have

G = K.Z(G,K)
Lemma 3.2

If G is a connected Lie group, then G contains a maximal compact normal
semisimple (so connected) subgroup (which may be (1)).
Proof ‘ v

Let Q be a semilattice of compact normal semisimple (connected) subgroups of G,
then Q has a zero as follows: let n be the maximum dimension of elements of Q and

K’ be an element of Q with dimension n. Then if Kisin Q, KK' isin Q and KK con-
tains K’. But _dim(KK’) = dim(K"). So KK' = K'.

Thus K’ is a zero of Q and is the required maximal subgroup of G.
Theorem 3.3

If G is a connected Lie group, and K is the maximal compact normal semisimple
subgroup of G, then

G = (KxZ(G,K),)/[F
where Z(G,K), is the connected component of Z(G, K), the centralizer of Kin G,
and F is a finite subgroup of Z(K), the center of K. - '

Proof

We have, see theorem 3.1 above, that G =K. Z(G, K), since K is a compact normal sub-
group. Now lét p : G — G/K be the projection map. Then we have p :Z(G,K)— G/K
is onto. By the open mapping theorem, it follows that p is an open map. Since
Z(G,K), is open in Z(G, K), therefore p(Z(G, K),) is open in G/K. Hence it is clear
now that G = K.Z(G,K),. We also have KNZ(G, K) = Z(K). So KNZ(G,K),=Fis
a finite subgroup of Z(K). :

Now we can-write G as the direct produc® KxZ(G,K), modulo F, i.e.
G = (KxZ(G,K),)/F.

Now let w be the Haar measure on F. In this case we have :

Theorem 3.4 ‘ |
_For G, K and F as above

(1) ZM(G) = ZM(KxZ(G,H),) *

(2) AZM(G) = { heAZM(KxZ(G,K),) : h(w;) = 1}.

.
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Proof

Since Fis a finite central subgroup of K the maximal compact normal semisimple
subgroup of G, therefore Fis a compact normal subgroup of KxZ(G, K),. Applying
(2) and (4) of theorem 2.6, the proof follows easily.

By 3.4, if we know AZM(KxZ(G,K),), we know AZM(G). But results of Rago-
zinP®l reduce the study of AZM(KxZ(G,K),) to the sudy of AZM(Z(G,K),). In fact
concerning the spectrum (the maximal ideal space) of ZM(SxH), the center of the
measure algebra of SxH where § is a compact simple Lie group and H an arbitrary
locally compact group, it has been proved that :

AZM(SxH) = AZM(S) xAZM(H)

(This together with earlier results of Ragozin!), yield a complete description of the
spectrum AZM(K) for any compact connected semisimple Lie group (K).

Ragozin[31,vshows that if S is a compact simple Lie group, then :
AM(S) = SUZ

where Z is the center of S and $ (resp. 2) is the dual space of § (resp. Z).

ASo we need to study ZM(G), where G(=Z(G,K),) is a connected Lie group with
ho compact normal semisimple subgroups.
Standing Assumption 3.5

In the remainder of this paper, G will be a connected Lie group with no compact
normal semlslmple subgroups. .

4. The Structure of B(G)

In this section as a conclusion, we reduce the study of ZM(G), by Greenleafl!l, to
the study of ZGM(B(G)), the algebra of G-invariant bounded measures on B(G), the
subgroup of G of elements with relatively compact conjugacy classes. We also define
the structure of B(G).

Tits inl®), theorem (1) and cotollary (1), shows that if Gisa connected locally com-
pact group, then B(G), the subgroup of G of elements with relatively compact conju-
gacy classes, is a closed characteristic subgroup in G.

If we consider G/K, where K is the maximal connected compact normal subgroup,
then, according to theorem (1) of Tits!®l,

B(G/K) = B(G/K), - Z(G/K)

Since B(G/K), is a vector group and Z(G/K) is compactly generated, therefore B(G/K)
is a compactly generated abelian group. Now B(G/K) has no compact connected
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subgroup. Hence B(G/K) = V x D, where V is a vector group (R™ for some integer
m) and D is a discrete finitely generated abelian group on which the G-inner au-
tomorphisms act trivially.

Hence if G is-a connected Lie group, then B(G) satisfies the exact sequence
(1) » K > B(G) > R"x D — (1) '

where K is the maximal compact connected normal subgroup of G and D is finitely
generated abelian and central in G/K In our case, G contains no compact normal
semisimble subgroup. Thus K = T* for some integer k, where T is the unit circle in
the complex plane. But then T* is central; so we will consider ZM(G) for G a con-
nected Lie group with no compact connected normal semisimple subgroup. Fora G,
the subgroup B(G) satisfies the central exact sequence

(1) > TF > B(G) - R"xD — (1)
i.e. T*is central, and B(G)/T* = R™ x D.

Greenleaf et al.I!l proved that all finite central measures on a connected Lie group
G are supported on the the closed subgroup B(G), i.e. ZM(G) = Z°M{(B(G)). Sowe
need to study the algebra ZSM(B(G)), of I(G)-invariant finite measures on B(G).
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